TY - JOUR TI - Electrical Conductivity, Thermal Behavior, and Seebeck Coefficient of Conductive Films for Printed Thermoelectric Energy Harvesting Systems AU - Ankireddy, Krishnamraju AU - Menon, Akanksha K. AU - Iezzi, Brian AU - Yee, Shannon K. AU - Losego, Mark D. AU - Jur, Jesse S. T2 - Journal of Electronic Materials AB - Printed electronics is being explored as a rapid, facile means for manufacturing thermoelectric generators (TEGs) that can recover useful electrical energy from waste heat. This work examines the relevant electrical conductivity, thermal resistance, thermovoltage, and Seebeck coefficient of printed films for use in such printed flexible TEGs. The thermoelectric performance of TEGs printed using commercially relevant nickel, silver, and carbon inks is evaluated. The microstructure of the printed films is investigated to better understand why the electrical conductivity and Seebeck coefficient are degraded. Thermal conduction is shown to be relatively insensitive to the type of metalized coating and nearly equivalent to that of an uncoated polymer substrate. Of the commercially available conductive ink materials examined, carbon–nickel TEGs are shown to exhibit the highest thermovoltage, with a value of 10.3 μV/K. However, silver–nickel TEGs produced the highest power generation of 14.6 μW [from 31 junctions with temperature difference (ΔT) of 113°C] due to their low electrical resistance. The voltage generated from the silver–nickel TEG was stable under continuous operation at 275°C for 3 h. We have also demonstrated that, after a year of storage in ambient conditions, these devices retain their performance. Notably, the electrical conductivity and Seebeck coefficient measured for individual materials were consistent with those measured from actual printed TEG device structures, validating the need for further fundamental materials characterization to accelerate flexible TEG device optimization. DA - 2016/11/01/ PY - 2016 DO - 10.1007/s11664-016-4780-2 DP - Springer Link VL - 45 IS - 11 SP - 5561 EP - 5569 J2 - Journal of Elec Materi LA - en SN - 1543-186X UR - https://doi.org/10.1007/s11664-016-4780-2 Y2 - 2021/05/06/21:03:49 KW - Energy Conversion KW - Thermoelectric device KW - organic thermoelectrics ER -