Publications: Energy Conversion

Kocher, J. D., & Yee, S. K. (2024). Equivalent Circuits for Exergy Flow in Thermodynamic Systems. ASME Journal of Heat and Mass Transfer, 147(022901). https://doi.org/10.1115/1.4066696 Cite
Kocher, J. D., Woods, J., Odukomaiya, A., Mahvi, A., & Yee, S. K. (2024). Thermal battery cost scaling analysis: minimizing the cost per kW h. Energy Environ. Sci., 17(6), 2206–2218. https://doi.org/10.1039/D3EE03594H Cite
Adams, M. J., & Yee, S. K. (2023). Thermal switching ratio of semiconducting polymers with spatially graded doping. Journal of Applied Physics, 133(6), 064501. https://doi.org/10.1063/5.0138758 Cite
Feng, D., Yee, S. K., & Zhang, Z. M. (2022). Geometric and doping effects on radiative recombination in thin-film near-field energy converters. AIP Advances, 12(9), 095006. https://doi.org/10.1063/5.0103358 Cite
Feng, D., Yee, S. K., & Zhang, Z. M. (2022). Improved performance of a near-field thermophotovoltaic device by a back gapped reflector. Solar Energy Materials and Solar Cells, 237, 111562. https://doi.org/10.1016/j.solmat.2021.111562 Cite
Rajan, A., & Yee, S. K. (2022). System dynamics and metrics of an electrochemical refrigerator based on the Brayton cycle. Cell Reports Physical Science. https://doi.org/10.1016/j.xcrp.2022.100774 Cite
Amy, C., Pishahang, M., Kelsall, C., LaPotin, A., Brankovic, S., Yee, S., & Henry, A. (2022). Thermal energy grid storage: Liquid containment and pumping above 2000 °C. Applied Energy, 308, 118081. https://doi.org/10.1016/j.apenergy.2021.118081 Cite
Rajan, A., McKay, I. S., & Yee, S. K. (2022). Continuous electrochemical refrigeration based on the Brayton cycle. Nature Energy. https://doi.org/10.1038/s41560-021-00975-7 Cite
Kocher, J. D., Yee, S. K., & Wang, R. Y. (2022). A first and second law analysis of a thermoresponsive polymer desiccant dehumidification and cooling cycle. Energy Conversion and Management, 253, 115158. https://doi.org/10.1016/j.enconman.2021.115158 Cite
Rajan, A., McKay, I. S., & Yee, S. K. (2022). Electrolyte engineering can improve electrochemical heat engine and refrigeration efficiency. Trends in Chemistry. https://doi.org/10.1016/j.trechm.2021.12.006 Cite
Feng, D., Yee, S. K., & Zhang, Z. M. (2021). Near-field photonic thermal diode based on hBN and InSb films. Applied Physics Letters, 119(18), 181111. https://doi.org/10.1063/5.0068775 Cite
Feng, D., Tervo, E. J., Vasileska, D., Yee, S. K., Rohatgi, A., & Zhang, Z. M. (2021). Spatial profiles of photon chemical potential in near-field thermophotovoltaic cells. Journal of Applied Physics, 129(21), 213101. https://doi.org/10.1063/5.0047241 Cite
Kaffezakis, N., Terlizzi, S., Smith, C., Erickson, A. S., Yee, S. K., & Kotlyar, D. (2020). High temperature ultra-small modular reactor: Pre-conceptual design. Annals of Nuclear Energy, 141, 107311. https://doi.org/10.1016/j.anucene.2020.107311 Cite
Feng, D., Tervo, E. J., Yee, S. K., & Zhang, Z. M. (2020). Effect of Evanescent Waves on the Dark Current of Thermophotovoltaic Cells. Nanoscale and Microscale Thermophysical Engineering, 24(1), 1–19. https://doi.org/10.1080/15567265.2019.1683106 Cite
Gunawan, A., Singh, A. K., Simmons, R. A., Haynes, M. W., Limia, A., Ha, J. M., Kottke, P. A., Fedorov, A. G., Lee, S. W., & Yee, S. K. (2020). A Cost‐Performance Analysis of a Sodium Heat Engine for Distributed Concentrating Solar Power. Advanced Sustainable Systems, 4(6), 1900104. https://doi.org/10.1002/adsu.201900104 Cite
Gunawan, A., Simmons, R. A., Haynes, M. W., Moreno, D., Menon, A. K., Hatzell, M. C., & Yee, S. K. (2019). Techno-Economics of Cogeneration Approaches for Combined Power and Desalination From Concentrated Solar Power. Journal of Solar Energy Engineering, 141(021004). https://doi.org/10.1115/1.4042061 Cite
Elmoughni, H. M., Menon, A. K., Wolfe, R. M. W., & Yee, S. K. (2019). A Textile-Integrated Polymer Thermoelectric Generator for Body Heat Harvesting. Advanced Materials Technologies, 4(7), 1800708. https://doi.org/https://doi.org/10.1002/admt.201800708 Cite
Limia, A., Kottke, P., Fedorov, A. G., & Yee, S. K. (2018). Thermal modeling and efficiency of a dual-stage sodium heat engine. Applied Thermal Engineering, 145, 603–609. https://doi.org/10.1016/j.applthermaleng.2018.09.071 Cite
Limia, A., Ha, J. M., Kottke, P., Gunawan, A., Fedorov, A. G., Lee, S. W., & Yee, S. K. (2017). A dual-stage sodium thermal electrochemical converter (Na-TEC). Journal of Power Sources, 371, 217–224. https://doi.org/10.1016/j.jpowsour.2017.10.022 Cite
Torabi, M., Karimi, N., Peterson, G. P., & Yee, S. (2017). Challenges and progress on the modelling of entropy generation in porous media: A review. International Journal of Heat and Mass Transfer, 114, 31–46. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.021 Cite
Gordiz, K., Menon, A. K., & Yee, S. K. (2017). Interconnect patterns for printed organic thermoelectric devices with large fill factors. Journal of Applied Physics, 122(12), 124507. https://doi.org/10.1063/1.4989589 Cite
Gunawan, A., Rajan, A., Rodin, D. M., Creamer, P., & Yee, S. K. (2017). New directions in thermoelectric and thermal-electric cooling. Optical and Electronic Cooling of Solids II, 10121, 101210N. https://doi.org/10.1117/12.2257359 Cite
Menon, A. K., Meek, O., Eng, A. J., & Yee, S. K. (2017). Radial thermoelectric generator fabricated from n- and p-type conducting polymers. Journal of Applied Polymer Science, 134(3). https://doi.org/https://doi.org/10.1002/app.44060 Cite
Dixon, J., Rajan, A., Bohlemann, S., Coso, D., Upadhyaya, A. D., Rohatgi, A., Chu, S., Majumdar, A., & Yee, S. (2016). Evaluation of a Silicon 90 Sr Betavoltaic Power Source. Scientific Reports, 6(1), 38182. https://doi.org/10.1038/srep38182 Cite
Ankireddy, K., Menon, A. K., Iezzi, B., Yee, S. K., Losego, M. D., & Jur, J. S. (2016). Electrical Conductivity, Thermal Behavior, and Seebeck Coefficient of Conductive Films for Printed Thermoelectric Energy Harvesting Systems. Journal of Electronic Materials, 45(11), 5561–5569. https://doi.org/10.1007/s11664-016-4780-2 Cite
Hendricks, T. J., Yee, S., & LeBlanc, S. (2016). Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive. Journal of Electronic Materials, 45(3), 1751–1761. https://doi.org/10.1007/s11664-015-4201-y Cite
Menon, A. K., & Yee, S. K. (2016). Design of a polymer thermoelectric generator using radial architecture. Journal of Applied Physics, 119(5), 055501. https://doi.org/10.1063/1.4941101 Cite
LeBlanc, S., Yee, S. K., Scullin, M. L., Dames, C., & Goodson, K. E. (2014). Material and manufacturing cost considerations for thermoelectrics. Renewable and Sustainable Energy Reviews, 32, 313–327. https://doi.org/10.1016/j.rser.2013.12.030 Cite
Yee, S. K., LeBlanc, S., Goodson, K. E., & Dames, C. (2013). $ per W metrics for thermoelectric power generation: beyond ZT. Energy & Environmental Science, 6(9), 2561–2571. https://doi.org/10.1039/C3EE41504J Cite
Yee, S. K., Coates, N., Urban, J. J., Majumdar, A., & Segalman, R. A. (2013). A High-Performance Solution-Processable Hybrid Thermoelectric Material. 539–543. https://doi.org/10.1115/MNHMT2012-75002 Cite
Yee, S. K., Coates, N. E., Majumdar, A., Urban, J. J., & Segalman, R. A. (2013). Thermoelectric power factor optimization in PEDOT:PSS tellurium nanowire hybrid composites. Physical Chemistry Chemical Physics, 15(11), 4024–4032. https://doi.org/10.1039/C3CP44558E Cite
Coates, N. E., Yee, S. K., McCulloch, B., See, K. C., Majumdar, A., Segalman, R. A., & Urban, J. J. (2013). Effect of Interfacial Properties on Polymer–Nanocrystal Thermoelectric Transport. Advanced Materials, 25(11), 1629–1633. https://doi.org/https://doi.org/10.1002/adma.201203915 Cite
Yee, S. K., Malen, J. A., Majumdar, A., & Segalman, R. A. (2011). Thermoelectricity in Fullerene–Metal Heterojunctions. Nano Letters, 11(10), 4089–4094. https://doi.org/10.1021/nl2014839 Cite
Yee, S., Malen, J., Reddy, P., Segalman, R., & Majumdar, A. (2011). Thermoelectricity at the Organic-Inorganic Interface. 845–855. https://doi.org/10.1115/IHTC14-22690 Cite
Malen, J. A., Yee, S. K., Majumdar, A., & Segalman, R. A. (2010). Fundamentals of energy transport, energy conversion, and thermal properties in organic–inorganic heterojunctions. Chemical Physics Letters, 491(4), 109–122. https://doi.org/10.1016/j.cplett.2010.03.028 Cite